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ON A LINEAR OBJECT OBSERVATION PROBLEM’

B.N. PSHENICHNYI and V.G. POKOTILO

Minimax estimates in linear systems /1,2/ are investigated under random perturbations
in the meter channel. It is proved that under reasonable assumptions they are asym-
ptotically exact with probability one and, furthermore, that simpler estimates posses-—
sing the same properties can be constructed, effectively computable by mathematical
programming methods.

1. assume that the signal
y =0z 4w, t=T, 2= R T = {1, 2,0} (1.1)

is being observed. Here and later lower-case Roman letters denote column-vectors and lower-
case Greek letters denote row-vectors of appropriate dimensions; z is the unknown parameter

vector; (), are deterministic m X n-matrices; w, is a narrow-sense-stationary random process
specified on the space of elementary events {Q, X, P} in the phase space {R™, A}, where A is
the Borel o-algebra of sets from HR"™. The restriction w, & W, W is a compactum in R, is
assumed fulfilled for all ¢ <= 7. The estimate z, ({, N) of the scalar quantity 1z, p & R,
ffap§ = 1, from N cbservations (1.1) is defined as follows:
N
2y (, V) = ]'Ilfmt LEJI {I'(— o, | WY 4+ w,]: (1.2}

N
> 0,0y = 117} , T{o]W)=sup{ow: we= W)
=

is the support function of set W,z (},.V) is the value of the support function of the domain
compatible with the signal y,,..., yv being realized in the case of indeterminate noise and
of a convex set W /2/. The derivation of (1.2) is based on the standard duality relations of
convex analysis. We state several conditions.

Condition 1. There exist M >0, a positive integer [ >> 1 and a partitioning {/;} of set

T into collections Jy, k =1, 2,...,0f [ indices each, such that: 1) J, N J;=¢, i+j;2) if
i, je=Jy, i J, then |i —j |2 k; 3) for any k > 1 the system of equations
2 o= (1.3
ET,
has a solution ; such that
o <M, i J; (1.4)

By S' we denote the semigroup of measure-preserving transformations of a shift, connected
with process {uy, t <= T}). If U'is the semigroup of transformations of the shift of random
variables, corresponding to S!, then /3/ wy = U'w,.

Condition 2. For any &,|¢ | =1 and & >0
P AT (—B|W) + fuwo < e} = p () > 0
Condition 3. The process {w, t< I} is regular /3/.

Condition 4. There exists e, >> 0 such that for all &, | & || = 1, the distribution function
of the random variable 1 -: I' (—§| W) -- $wy is continuous on (0, e4).

Condition 5. The random process {uy, { & T} is a process with mixing /3,4/.
Condition 5'. The random process {uy,t = T} satisfies the weak mixing condition /4/.

Theorem 1. 1If Conditions 1, 2, 3 or 1, 2, 4, 5 (5') are fulfilled, then estimate (1.2)
is consistent and z, (¢,N)}—> ¢z as N — oo with probability one.

Estimate (1.2) is nonlinear. We now assume that Condition 1 has been fulfilled and we
choose », in the following manner: the o; satisfy (1.3) and (1.4) for all (& Je k=1, 2,0,

*Prikl.Matem.Mekhan,46,No.2,pp.212-217,1982

156



linear obiject observation problem 157

and are arbitrary for the remaining ¢ < T. We define a linear estimate z; (1, N) of the quant-
ity Wz
N
2200 M) = infy, { 3 A AT (— 0| W) + @l (1.5)

The next theorem is our main result:

Theorem 2. If conditions 2, 3 or 2, 4, 5 (5') are fulfilled, then estimate z,(y,N) is
consistent and 2z, (P, N)—>¢z as N — oo with probability one.

Proof of Theorem 1. Substituting the expression for y, t& T, into (1L.2) and (1.5),
we can obtain
Z;
N
Y1 (b, V) = mfm,{ [T (— o | W) + o0 :tE m:d)t=‘|9}
=1
IN

y2 (P, V) == me {21 A (L (— o | W) + wawy] :

(1)
Y

Ny =zt v b )i, 2

21 LoDy =1b, A > OJk

Since 0 < vy; (¥, N) < v2 (b, V), the assertion of Theorem 1 follows from Theorem 2.
Let J;={1,2,..., N}, i=1,2,...,.K, L>1 Then

o
I}
o
o
Hh -
o
x|
=
o
0
A
o
8
N

I
K .
M>0, X dy= 1} {2 [T (— o] W) + e : L<t <K
=1
By A4;(e, ®) and B; (¢) we denote the following events

A; (g, 0) ={T (—o | W) + ow; <&}
Bi(e) ={ 3 [T (— o)+ oeil > e
R

e see that

P(Be(e) <1 —P( ﬂ A (el wy)

We now assume the fulfillment of Conditions 2 and 3. Then L >> 1 exists and for all k

P( 1 Al o) > I P (Ao (e, 00)) > Ya (p (e (MY 1) >0

el L=

\\;"
2]

Comparing the last twce inequalities, we obtain

P(By () << 1 — Yy (ple (D)) <1
From the resularity of w, it follows that for any r > 1 there exists K, (respectively, N
such that for all K> K, (N > Ny)

P[] Bule) S2(L— ' (p e (WHMY)Y
Since B

p{mm{z [T {— w; | W) + o] : L/t\K}< el > 1_p(f£| By (&)
ieJ ‘ 3 k=L
we finally obtain that for N > N,

Pllz,(h, N) —wpz|<<e}>1—2(1—Yylp (e (M)

i.e., 2z, (P, N) converges in probability to 1z. Convergence with probability one follows simply
from the monotonicity of 24 (%, N) with resepct to N.

We now note that the reqgularity of process w,; was used only when justifying for all suffic-
iently small & >0 the equality
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iimi_.msup“mKMi P (SiAu (gs (.0} ﬂ C) —P (AO (8,0))) P (C)l =0 (1.6)

where C & £ (T) is the o -algebra induced by events of the form {w; =G}, G=A, t= 7. The
latter is valid, in particular, if Conditions 4 and 5 are fulfilled. We prove this fact by
contradiction.

Let g >0 and * i=1,2,..., exist such that

[P (Si4g (e, @*) N C) — P (dole, ") PC)]| > e (1.7

Since |o*|< M, without loss of generality we can take it that lim_,, oi*= o0, and [o]< M.
Therefore, for sufficiently large i we have 4,(e, ®*) D4,(e,0,). Consequently,

[P (SH4gfe, oM N O —Pldele, o*) POV (1.8}
[P (S*4, (2, @) N C) — Pldg (e, 0,)) P{0)+
21 P(dgle, @*) — P (dqafle, @) ]

The latter ineguality contradicts {1.7) since Hm_ [P (SH4¢(e, 0,) N C)— P (4o (e, 0)) P(C)] =0 for
processes with mixing, while from the continuity of T{(-|W), Helly's theorem and Condition 4
it follows that for sufficiently small &> 0

lim; , P (4do{e, @*) = P (4o (&, i)
The validity of equality (1.6) has been established.

Condition 5 can be replaced by Condition 5'. To prove this it is enough to make use of
the simple properties of weak mixing /4/. If observations (1.1) are independent, we canwaive
property 2} in Condition 1.

As a discussion of the results we note the following.

1°, To form the estimates z; , V), i = 1, 2, we do not need to know the distributions of
the random variables w, on set Wor any characteristic of such a distribution. The consist-
ency of the estimates in the case of independent observations obtains under the fulfillment
only of Condition 2, which can be interpreted as the start of a trial run of the meter.

2°. The estimates z; ({, N), i = 1, 2, are upper bounds for Yz and do not grow monotonical-
ly as N ~» co. The estimates ~—z; {— ¢, N}, i=1,2, obvicusly, are monotonically-nondecreasing
lower bounds for 1z . Consequently, Theorems 1 and 2 are valid for estimates of the form
Uy (z Op, N) — 2, (— 4, V)i =1, 2, whose application yields a convenient stopping rule with resp-
ect to the accuracy achieved.

3°. When constructing the estimate z, (¢, V) the choice of o4 ¢t & I, can be made before
the start of the mearurements, and it depends solely on the properties of the matrix &,. If
necessary, several ®; can be chosen. for each t& T, having set, for example, W == ey, J ==
1,2,. .., m) (the e;-th unit vector). Obviously, all the o; i & J,, satisfying (1.3) can be re-
presented as a linear combination of vectors from o, with positive coefficients. Formally
this leads to an estimate of form (1.5) with due regard to the ambiguity in the cheoice of w,.

4°. Estimate z, (f, V) is formed from the solution of a linear programming problem in
standard form. Furthermore, as N grows it is easy to make a recurrent transition fromproblem
to problem since the addition of one measurement signifies the writing in of a new column in
the matrix of constraints of probiem (1.5}, In this sense the construction of estimate z, (},
Y) is essentially simpler than that of z; (§, N), which, as already noted, is typical for the
case of indeterminate noise of form {(1.2).

Example 1. Suppose that we are measuring the scalar signal y =z wi.w el—1,1] is a
random process with independent values, and for all &>0 let P{l:-w <& > pr) >0, v= -1 In
this case

2 (P, N)y=1-min{y 1< t< N}
If w; is distributed uniformly on [— 1, 1], then gz (§, N) coincides with one of the maximum likeli-
hood estimates, while the estimate ¥, (z, (0, N} — z (— P, N)) =1, (maxyy; -}- miny) is unbiased and
effective.

2. Let us consider the observation problem /1/ for a linear dynamic system

£ Ar tT 0 2.
The vectors

U == Bx () + wy {2.2)
are measured at discrete instants £, k = 1,2,..., Here A and B are constant matrices of dimen-
sions n ¥ n and m X n, respectively. It we pose the problem of determining the initial state
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z (0) = z = R, then observations (2.2) reduce to process (l.1) with @; = B exp A#. Let us as-
sume that the observations are made after equal time intervals 1> 0,¢, = kt,k =1,2. ..., andrank
| B¥, A*B* ... A*") .*|=pn (here the asterisk denotes transposition). This singifies that
the system is completely observable with respect to output (2.2) when wy=0,k=1,2, ..

A principal feature determining the possibility of applying Theorems 1 and 2 for this case

is the verification of the fulfillment of Condition 1. Let A,..., A, be the eigenvalues of
matrix A4, of multiplicities k..., k, respectively. Further, let k;;,j =1,2,..., k,be the vec-
tors of a series relative to matrix A4 with eigenvalues A;, i.e.,
Ahjy = Mhy,  Ahgp=Ahe -+l - oo Ay = Mhy, A+ Do
The vectors h;;,j=1,2,..., ki =1,2,...,r, form a basis in R", in which matrix 4 has a Jordan
form.
We shall take it that
% = RelA; = ... = Reh,, <<% = Red,,, = ... =Rehpur, << %3 = ... <<wg=...= Rek,

and, in addition, %y <0 <% . The following basic statement is valid.

Lemma 1. There exists t >0 such that when @, = B exp Akt condition 1 with [=n is
fulfilled for all 4, | ¥ | =1, satisfying the condition

v

’lP}lijZO, j=1,2,...,ki, i=1,2,...,2,rs (2.3)
The proof of this lemma is rather cumbersome and we omit it hagée. We merely make certain re-
marks. The prohibited values of the discretization parameter t are determined by the periods
typical of system (2.1). If matrix 4 has multiple pure imaginary eigenvalues, then the uni-
form boundedness of the solutions of (1.3) can be achieved by selecting Jy={k, i =1,2,...,n}
such that the quantity k|k — k' is bounded for all i, ;=1,2,..., nisj, k=1,2 .... The set
of vectors ¢ satisfying (2.3) in the sense defined is sufficient for solving the problem posed,
since

P exp (At)z = P, exp (A1) z + 8 (1)
|8 @ |<Cexpx,t—0, t— o0, C=const

where ¢, satisfies (2.3) and ¢ %0 if only ~v<eg.
Example 2. Let
a=|°? B=|1,0 t=1
S HH IR

{0, t= T} is the same as in Example 1. For Jx = {k, k} and ¢ = |, pj the solution of (1.3) is
determined as follows:

= Tk —k ? by ™ Thy — Ry

_ M- ® P; — iy

From (1.5) we obtain estimates for the initial position z;(X) and velocity gz, (K):
. k-z“ +!Ik,)’—k1 (1 —I/k,)
zl(K)=mm1<i<K s Y =1, 0]

) (+u)+0—w,)
3 (K) =mm1<i<"'__l:z—;—kl_l' P=0, 1|

The consistency of =z, (K) obtains if the ratio (k, + ko) / (k; — &) is bounded. Obviously, this can
be ensured.

Example 3. Let
1

A 0 B 1,0
| ] En

and w, be the same as in the preceding example. If y*=0?—4*>0, then matrix 4 has the simple
eigenvalues My= — 6+ iy. If 8>0, then Rei; <0 and {z ()| < Cexp(—ds), where =z() satisfies
system (2.1). Let &8<0. Then for ¢ =N, ¥ ap = (¥,5; — ¥,S,) p?

Wy, = — [¥; (C3 + 388y} + ¥3 (G, + 85)]p?
¥; = Pjexp 8k;1, S; = sin y kv, C; = ¥ cos yiyT
1=1, 2, p=vysiny(k— k)

T == {ky, kg}, kg =k +1, k =1,2,. ..

Estimate (1.5) has the form
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Zy (P, K) = min]g;.-gK { (L‘h| -+ mhyh) +( 0., | Q’}.-._,!/r:)}

The latter is consistent if only sinyv > 0.
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