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ON A LINEAR OBJECT OBSERVATION PROBLEM* 

B.N. PSHENICHNYI and V.G. POKOTILO 

Minimax estimates in linear systems /1,2/ are investigatedunderrandomperturbations 

in the meter channel. It is proved that under reasonable assumptions they are asym- 

ptotically exact with probability one and, furthermore,thatsimplerestimatesposses- 

sing the same properties can be constructed, effectively computable by mathematical 

programming methods. 

1. Assume that the signal 

yi :: (I)$ 1~ 1,‘;, t tE T, .? IF= 8". 1' ~- (1, 2,. .) (1.1) 

is being observed. Here and later lower-case Roman letters denote column-vectors and lower- 

case Greek letters denote row-vectors of appropriate dimensions; z is the unknown parameter 

vector; '1~~ are deterministic m ‘< ?z-matrices , ; U’[ is a narrow-sense-stationary random process 

specified on the space of elementary events (12, S,P} in the phase space {K"'J), where .\ is 

the Bore1 e-algebra of sets from I<"'. The restriction zl‘l E M', W is a compactum in f<"', is 

assumed fulfilled for all t E I'. The estimate z,($, 1V) of the scalar quantity I@, II, E 1tn. 
(1 II’ /I 7 1, from .Vobservations (1.1) is defined as follows: 

is the support function of set W,z,($..V) is the value of the support function of the domain 
compatible with the signal y,,. . ., yn~ being realized in the case of indeterminate noise and 

of a convex set Jt'/2/. The derivation of (1.2) is based on the standard duality relations of 

convex analysis. We state several conditions. 

Condition 1. There exist ;If> 0, a positive integer 1> 1 and a partitioning {JI;} ofset 

T into collections J,, h_ = 1, Z,.... of 1 indices each, such that: 1) Ji fl Jj = $, i #j; 2) if 

i, j" I,, i fj, then j i -j 1;. k; 3) for any k > 1 the system of equations 

&@i = lli (1.3) 
ii 

has a solution cIli such that 

/\ oi II -< M, i E J, (1.4) 

By s' we denote the semigroup of measure-preserving transformations of a shift, connected 

with process {rl, t E T). If U1 is the semigroup of transformations of the shift of random 

variables, corresponding to St , then /3/ 1L't = ulw,. 

Condition 2. For any S,\\S jl = 1 and F ;,. 0 

P {r (- SlW) + @z&l < E} _-p (I) > 0 

Condition 3. The process {x.,, t F T] is regular /3/. 

Condition 4. Thereexists P*): 0 such that for all 6. j(6 I/ =: 1, the distribution function 

of the random variable ~1 mu r (--‘+I W) -t- fh!, is continuous on (8, e*). 

Condition 5. The random process {I(.,, t E 7’) is a process with mixing /3,4/. 

Condition 5'. The random process {I,.,.! F 1‘) satisfies the weak mixing condition /4/. 

Theorem 1. If Conditions 1, 2, 3 or 1, 2, 4, 5 (5') are fulfilled, then estimate (1.2) 

is consistent and z, ($,N)-+z as A'+ cc with probability one. 

Estimate (1.2) is nonlinear. We now assume that Condition 1 has been fulfilled and we 

choose (r)[ in the following manner: the wt satisfy (1.3) and (1.4) for all to J,, k 7 1. 2,. ‘1 
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and are arbitrary for the remaining t E T. We define a linear estimate zz($,N)of the quant- 

ity $z: 

(1.5) 

The next theorem 

Theorem 2. 
consistent and z1 

*=I , 

is our main result: 

If conditions 2, 3 or 2, 4, 5 (5') are fulfilled, then estimate z,($,N) is 

(9, N)+v as N-too with probability one. 

Proof of Theorem 1. Substituting the expression for y,, t= T, into (1.2) and (1.51, 

we can obtain 

Since 0 &yl($,N).< J~~($,N), the assertion of Theorem 1 follows from Theorem 2. 

Proof of Theorem 2. Let Ji E (1, 2,..., N), i = 1,2,. ..: K, L> 1. Then 

By Ai(E, 0)) and Bk(&) we denote the following events: 

Ai (E, 0) ={r (--O I W) f @u& -CE} 

fh (E) = & [r (- (4 1 w $ WL’ii > E} 

We see that 
P (B,(E))< 1 -- P (e?. ‘4; (El-'*%)) 

h 

We now assume the fulfillment of Conditions 2 and 3. Then L> 1 exists and for all k>L 

P (,,“J Ai (el-‘, cot)) > ‘1% n P (A W’, 04 > l/z (P (e (~W-‘1)’ > 0 
r iEJr 

Comparing the last two inequalities, we obtain 

P (Rk (E)) C< 1 - ‘/z (p (E (lM)-‘))I < i 

From the resularity of 10~ it follows that for any r> 1 there exists K, (respectively, NO) 
such that for all K>K,(N>N,) 

Since 

p (,tL Bk (E)) < ‘2 (1 - ‘1% (P (e (lM)-‘))‘)’ 

[r (- oi 1 w) + oiwi] : L <t < K 

we finally obtain that for N> N, 

P {I zz ($, N) - w I c e) > 1 - 2(1 - 'la(~ (e WV'))')' 
i.e., z*($,N) converges in probability to Qz. Convergence with probabilityone follows simply 
from the monotonicity of z,($,N) with resepct to N. 

We now note that the regularity of process w1 wasusedonlywhen justifying forallsuffic- 
iently small e>O the equality 
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(1.6) 

where c E 2 (T) is the u-algebra induced by events of the form {u+ EG), GE A, to I’, The 
latter is valid, in particular, if Conditions 4 and 5 are fulfilled. We prove this fact by 
contradiction. 

Let a,>0 and w,‘, i= 1,2,..., exist such that 

I P (S”AO (89 W*) fl C) - P (-40 (8, %*)I P (0 ) & Eo (1.7) 

Since 11 oi*I[< M, without loss of generality we can take it that lim,__ Oi* = W* and llo*l< M+ 
Therefore, for sufficiently large i wehave Ao(a,ei*)3Ao(~,o,). Consequently, 

I P WA, &, @i*) fl Cl - P (A, f% ai*)) P (0 I Q (1.8) 

1 P (Sia, @, e*) f‘i C) - p (‘4, f& a) p (C) -I- 

2]P(Aof% @i*)-PP~oi~,O*))/ 

The latter inequality contradicts (1.7) since lim,, 1 P (SiAO (e, a*) J? C) - P (A, (e, a*)) P(C) J = 0 for 
processes with mixing, while from the continuity of P(*IW), Helly's theorem and Condition 4 
it follows that for sufficiently small a>0 

limi+P (Ac(E, ai*)) = P (A0 (e, %)) 

The validity of equality (1.6) has been established. 
Condition 5 can be replaced by Condition 5'. To prove this it is enough to make use of 

the simple properties of weak mixing /4/. If observations (1.1) are independent, we canwaive 
property 2) in Condition 1. 

As a discussion of the results we note the following. 
lo . To form the estimates zi(Ip, N), i = 1, 2, we do not need to know the distributionsof 

the random variables wt on set Wor any characteristic of such a distribution. The consist- 
ency of the estimates in the case of independent observations obtains under the fulfillment 
only of Condition 2, which can be interpreted as the start of a trial run of the meter. 

20. The estimates Zi('$, N), i -: ‘i, 2, are upper bounds for qz and do not grow monotonical- 
ly as *Y-too. The estimates -zi (-$,;V) , i = 1,2, obviously, are monotonically-nondecreasing 
lower bounds for $2. Consequently, Theorems 1 and 2 are valid for estimates of the form 
I'.: (z, (v, _v) - zi (-3, .Y)),i = 1, 2, whose application yields a convenient stopping rule with resp- 
ect to the accuracy achieved. 

3O. When constructing the estimate z?($,N) the choice of <1)~,1 E T, can be made before 
the start of the mearurements, and it depends solely on the properties of the matrix CD*. If 
necessary, several 01 can be chosen for each tfZ 3', having set, for example, z, =-: {& ej, j ~2 

1,2,. . ., tu) (the ej-th unit vector). Obviously, all the (tji, i E J,, satisfying (1.3) can be re- 
presented as a linear combination of vectors from Ol with positive coefficients. Formally 
this leads to an estimate of form (1.5) with due regard to the ambiguity in the choice of ('Jo. 

4O. Estimate +($, S) is formed from the solution of a linear programming problem in 
standard form. Furthermore, as ,Y grows it is easy to make a recurrent transition fromproblem 
to problem since the addition of onemeasurement signifies the writing in of a new COblln in 

the matrix of constraints of problem (1.5). In this sense the construction of estimate z2(*, 
S) is essentially simpler than that of z,(+#, iv), which, as already noted, is typical for the 
case of indeterminate noise of form (1.2). 

Example 1. Suppose that we are measuring the scalar signal v( = z-l- I('I.~LI~ E[--l,l] is a 
random process with independent values, and for all E > 0 let P{l + (c[ <e)> p (e) > 0, up = _: 1. In 
this case 

I, (41, N) = 1 -t min (l/t : 1 r, t .c- NJ 

If u+, is distributed uniformly on [- 1,1], then z,($, N) coincides withoneofthemaximum likeli- 

hood estimates, while the estimate '1, (z, ($ N) - z1 (- up, N)) = 'I, (maxrvt -I- min,yl) is unbiased and 

effective. 

2. Let us consider the observation problem /l/ for a linear dynamic System 

The vectors 

J/h. :7 11X (fh.) + "'h_ (2.2) 

are measured at discrete instants fl;, k = 1,2,. . . . Here A and 13 are constant matricesofdimen- 

sions 7, >: fz and m x s, respectively. It we pose the problem of determining the initialstate 
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5 (0) = 2 E P, then observations (2.2) reduce to process (1.1) with mDI, = B expAfk. Let us as- 
sume that the observations are made afterequaltimeintervals t> O,t, = h,k = 1,2...., andrank 
11 B*, A*B*, . . ., A*(“-I’ .B*I( = n (here the asterisk denotes transposition). This singifies that 
the system is completely observable with respect to output (2.2) when u& G 0, k = 1, 2,. . . . 

A principal feature determining the possibility of applying Theorems 1 and 2 for this case 
is the verification of the fulfillment of Condition 1. Let h,,. . ., h, be the eigenvalues of 
matrix A, of multiplicities k,,. ..,k, respectively. Further, let h,j,j = 1, 2,. . .,ki,be the vec- 
tors of a series relative to matrix A with eigenvalues hi, i.e., 

Ahil = hihil, Ahis = hihis + hiI, . . . , A+ = a&,,, + IQ,-, 

The vectors hir,j= 1,2,...,ki,i = I,2,...,r, form a basis in R", in which matrix A has a Jordan 
form. 

We shall take it that 

x1 = Reh, = . . . = Reh,,< x2 = Reh,,,, = . . . = Reh,,+,,< x2 = . . . < xg = . . . = Reh, 

and, in addition, X" < 0 < xv+1 . The following basic statement is valid. 

Lemma 1. There exists r>O such that when @)h. = Uesp Ah-s condition 1 with I= n is 
fulfilled for all $, I( I# 11 = 1, satisfying the condition 

@ij=O, j=1,2 ,..., ki, i=1,2 ,..., irS (2.3) 
s-1 

The proof of this lemma is rather cumbersome and we omit it here. We merely make certain re- 
marks. The prohibited values of the discretization parameter T are determined by the periods 
typical of system (2.1). If matrix A has multiple pure imaginary eigenvalues, then the uni- 
form boundedness of the solutions of (1.3) can be achieved by selecting Jk=(ki, i = 1, Z,...,n) 
such that the quantity k,Iki-kki[-l is bounded for all i,;=i,Z,..., n,i#i,k=i,Z,.... 'Ihe set 
of vectors rp satisfying (2.3) in the sense defined is sufficient for solving the problemposed, 
since 

~eexp(Ar)z=~,erp(At)z+8(t) 
~d(t)IdCexpx,t-+O, t-$-co, C=const 

where *I satisfies (2.3) and Y1#O if only vca. 

Example 2. Let 

/I= O I 
II I 0 0 ’ 

B = II 1, O/I, x=1 

(w,,~E T) is the same as in Example 1. For Jk = (k,,k,} and Y= ~~$,,$~pall the solution of (1.3) is 
determined as follows: 

From (1.5) we obtain estimates for the initial position z,(K) and velocity 51 (K): 

The consistency of s(K) obtains if the ratio (k,+ k,)/(k,-k,) is bounded. Obviously, this can 
be ensured. 

Example 3. Let 

and W, be the same as in the preceding example. If y'=o'- b*>O, then matrix A has the simple 
eigenvalues h,,= -a* iY. If b > 0, then Ro& <0 and [I (c)II G C exp (- br), where z W satisfies 
system (2.1). Let b ( 0. Then for 9 = M1,(Pn 1 ok, = (Y,S, - Y,S,) p-I 

"*, = - [Yl (C, + as*) + Y, (C, + w)lP-l 
Y, = 9pr.p bkjq S, = sin y k,r* Cj = Y ~5 @jT 
1 = i, 2, p = y sin y (kp - k,) T 
Jk = (k,, k,), k, = k, + 1, k = i, 2,. . . 

Estimate (1.5) has the form 
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The latter is consistent if only sin yr > 0. 
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